China OEM Poly Chain Gt 2 Timing Belt Pulley pulley alternator

Product Description

CHINAMFG Machinery offers a wide range of high quality Timing Belt Pulleys and Toothed Bars / Timing Bars. Standard and non-standard pulleys according to drawings are available.

Types of material:
  1. AlCuMgPb 6061 6082 Aluminum Timing Pulley
  2. C45E 1045 S45C Carbon Steel Timing Pulley
  3. GG25 HT250 Cast Iron Timing Pulley
  4. SUS303 SUS304 AISI431 Stainless Steel Timing Pulley
  5. Other material on demand, such as cooper, bronze and plastic
 
Types of surface treatment
 1.  Anodized surface -Aluminum Pulleys
 2.  Hard anodized surface — Aluminum Pulleys
 3.  Black Oxidized surface — Steel Pulleys
 4. Zinc plated surface — Steel Pulleys
 5. Chromate surface — Steel Pulleys;  Cast Iron Pulleys
 6. Nickel plated surface –Steel Pulleys;  Cast Iron Pulleys 
 
Types of teeth profile

Teeth Profile Pitch
HTD 3M,5M,8M,14M,20M
AT AT5,AT10,AT20
T T2.5,T5,T10
MXL 0.08″(2.032MM)
XL 1/5″(5.08MM)
L 3/8″(9.525MM)
H 1/2″(12.7MM)
XH 7/8″(22.225MM)
XXH 1 1/4″(31.75MM)
STS STPD S2M,S3M,S4.5M,S5M,S8M,S14M
RPP RPP5M,RPP8M,RPP14M,RPP20M
PGGT PGGT  2GT, 3GT and 5GT
PCGT GT8M,GT14M

 
Types of pitches and sizes

Imperial Inch Timing Belt Pulley,
1.     Pilot Bore MXL571 for 6.35mm timing belt; teeth number from 16 to 72;
2.  Pilot Bore XL037 for 9.53mm timing belt; teeth number from 10 to 72;
3.  Pilot Bore, Taper Bore L050 for 12.7mm timing belt; teeth number from 10 to 120;
4.  Pilot Bore, Taper Bore L075 for 19.05mm timing belt; teeth number from 10 to 120;
5.  Pilot Bore, Taper Bore L100 for 25.4mm timing belt; teeth number from 10 to 120;
6.  Pilot Bore, Taper Bore H075 for 19.05mm timing belt; teeth number from 14 to 50;
7.  Pilot Bore, Taper Bore H100 for 25.4mm timing belt; teeth number from 14 to 156;
8.  Pilot Bore, Taper Bore H150 for 38.1mm timing belt; teeth number from 14 to 156;
9.  Pilot Bore, Taper Bore H200 for 50.8mm timing belt; teeth number from 14 to 156;
10.  Pilot Bore, Taper Bore H300 for 76.2mm timing belt; teeth number from 14 to 156;
11.  Taper Bore XH200 for 50.8mm timing belt; teeth number from 18 to 120;
12.  Taper Bore XH300 for 76.2mm timing belt; teeth number from 18 to 120;
13.  Taper Bore XH400 for 101.6mm timing belt; teeth number from 18 to 120;

Metric Timing Belt Pulley T and AT
1.  Pilot Bore T2.5-16 for 6mm timing belt; teeth number from 12 to 60; 
2.   Pilot Bore T5-21 for 10mm timing belt; teeth number from 10 to 60; 
3.   Pilot Bore T5-27 for 16mm timing belt; teeth number from 10 to 60; 
4.   Pilot Bore T5-36 for 25mm timing belt; teeth number from 10 to 60; 
5.   Pilot Bore T10-31 for 16mm timing belt; teeth number from 12 to 60; 
6.   Pilot Bore T10-40 for 25mm timing belt; teeth number from 12 to 60; 
7.   Pilot Bore T10-47 for 32mm timing belt; teeth number from 18 to 60; 
8.   Pilot Bore T10-66 for 50mm timing belt; teeth number from 18 to 60;
9.  Pilot Bore AT5-21 for 10mm timing belt; teeth number from 12 to 60;
10. Pilot Bore AT5-27 for 16mm timing belt; teeth number from 12 to 60;
11. Pilot Bore AT5-36 for 25mm timing belt; teeth number from 12 to 60; 
12. Pilot Bore AT10-31 for 16mm timing belt; teeth number from 15 to 60; 
13. Pilot Bore AT10-40 for 25mm timing belt; teeth number from 15 to 60; 
14. Pilot Bore AT10-47 for 32mm timing belt; teeth number from 18 to 60; 
15. Pilot Bore AT10-66 for 50mm timing belt; teeth number from 18 to 60;
  
Metric Timing Belt Pulley HTD3M, 5M, 8M, 14M 
1.  HTD3M-06; 3M-09; 3M-15; teeth number from 10 to 72; 
2.  HTD5M-09; 5M-15; 5M-25; teeth number from 12 to 72; 
3.  HTD8M-20; 8M-30; 8M-50; 8M-85 teeth number from 22 to 192; 
4.  HTD14M-40; 14M-55; 14M-85; 14M-115; 14M-170; teeth number from 28-216; 
5.  Taper Bore HTD5M-15; 8M-20; 8M-30; 8M-50; 8M-85; 14M-40; 14M-55; 14M-85;
         14M-115; 14M-170

Metric Timing Belt Pulleys for Poly Chain GT2 Belts 
1.      PCGT8M-12; PCGT8M-21; PCGT8M-36; PCGT8M-62; 
2.      PCGT14M-20; PCGT14M-37; PCGT14M-68; PCGT14M-90; PCGT14M-125;

Power Grip CHINAMFG Tooth/ PGGT 2GT, 3GT and 5GT 
1. 2GT-06, 2GT-09 for timing belt width 6mm and 9mm 
2. 3GT-09, 3GT-15 for timing belt width 9mm and 15mm 
3. 5GT-15, 5GT-25 for timing belt width 15mm and 25mm

OMEGA RPP HTD Timing Pulleys 
1.   RPP3M-06; 3M-09; 3M-15; teeth number from 10 to 72; 
2.   RPP5M-09; 5M-15; 5M-25; teeth number from 12 to 72; 
3.   RPP8M-20; 8M-30; 8M-50; 8M-85 teeth number from 22 to 192; 
4.   RPP14M-40; 14M-55; 14M-85; 14M-115; 14M-170; teeth number from 28-216; 
5.  Taper Bore RPP5M-15; 8M-20; 8M-30; 8M-50; 8M-85; 14M-40; 14M-55; 14M-85;
     14M-115; 14M-170 .

Ubet Machinery is also competetive on these power transmission components.

Certification: ISO
Pulley Sizes: Timing
Manufacturing Process: Sawing
Samples:
US$ 3/Piece
1 Piece(Min.Order)

|

Order Sample

Normally sample order can be ready in 15 days
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

htd pulley

What is the significance of proper alignment and tensioning in HTD pulley systems?

Proper alignment and tensioning play a critical role in the performance, efficiency, and longevity of HTD pulley systems. The alignment refers to the precise positioning of the pulleys and belts, while tensioning refers to the adjustment of belt tension within the system. Here’s a detailed explanation of the significance of proper alignment and tensioning in HTD pulley systems:

1. Efficient Power Transmission:

Proper alignment ensures that the pulleys are positioned accurately with respect to each other and the belts are properly seated on the pulley grooves. This alignment is essential for efficient power transmission within the system. Misalignment can result in slippage, increased friction, and loss of power, leading to reduced performance and energy wastage. By ensuring proper alignment, optimal power transfer is achieved, enhancing the overall efficiency of the HTD pulley system.

2. Reduced Wear and Extended Lifespan:

Improper alignment or tensioning can cause excessive wear on the pulleys, belts, and other system components. Misalignment can lead to uneven belt loading, increased stress concentration, and accelerated wear on the belt teeth and pulley grooves. Insufficient or excessive belt tension can cause premature wear, belt fatigue, or belt stretching. By maintaining proper alignment and tensioning, the wear and stress on the system components are minimized, resulting in extended lifespan and reduced maintenance costs.

3. Enhanced Belt Performance:

HTD pulleys rely on positive engagement with the belts to transmit power effectively. Proper alignment and tensioning ensure that the belts are properly seated and engaged with the pulleys’ tooth profile. This allows for optimal grip and power transfer, minimizing belt slip and maximizing the belt’s performance capabilities. Correct tensioning also helps to maintain the desired belt tension throughout the system, ensuring reliable power transmission and preventing issues such as belt ratcheting or jumping teeth.

4. Improved System Accuracy:

In applications that require precise positioning or timing, such as in robotics or automated machinery, proper alignment and tensioning are crucial. Accurate alignment ensures that the motion control components, such as pulleys and belts, operate in synchronization, resulting in precise and repeatable movement. Proper tensioning ensures that the belts maintain the desired tension, preventing belt elongation or slack that could lead to positional inaccuracies or timing errors. The combination of proper alignment and tensioning enhances the overall accuracy and reliability of the HTD pulley system.

5. Noise and Vibration Reduction:

Improper alignment and tensioning can contribute to increased noise and vibration levels within the HTD pulley system. Misalignment can cause belt oscillation, noise, and vibration due to uneven loading or rubbing against system components. Insufficient tensioning can result in belt flutter, resonance, or vibration. Proper alignment and tensioning help to minimize these undesirable effects, reducing noise levels and ensuring smoother and quieter operation of the system.

6. Safety Considerations:

Proper alignment and tensioning are essential from a safety perspective. Misalignment can lead to sudden belt disengagement or belt derailment, posing safety hazards to operators or nearby personnel. Insufficient tensioning can cause belt slippage or unexpected belt failure, potentially resulting in accidents or damage to the machinery. By maintaining proper alignment and tensioning, the risk of these safety issues is minimized, creating a safer working environment.

In summary, proper alignment and tensioning in HTD pulley systems are of significant importance. They ensure efficient power transmission, reduce wear on system components, enhance belt performance, improve system accuracy, reduce noise and vibration, and contribute to overall safety. By paying attention to alignment and tensioning, the performance, reliability, and lifespan of HTD pulley systems can be optimized, leading to improved productivity and reduced maintenance requirements.

htd pulley

What maintenance procedures are necessary to ensure the reliability of HTD pulleys?

To ensure the reliability and optimal performance of HTD pulleys, several maintenance procedures should be followed. These procedures help identify and address potential issues, prevent premature wear or failure, and extend the lifespan of the pulleys. Here’s a detailed explanation of the necessary maintenance procedures for HTD pulleys:

1. Regular Inspection:

Regular inspections are essential to identify any signs of wear, damage, or misalignment in HTD pulleys. Inspect the pulleys visually, looking for cracks, chips, or deformations. Check the teeth for excessive wear or damage. Ensure that the pulleys are properly aligned and that there are no signs of excessive vibration or noise during operation. Regular inspections allow for early detection of potential problems, enabling timely maintenance or replacement of the pulleys to prevent further damage or failures.

2. Belt Tension Checks:

Proper belt tension is crucial for the reliable operation of HTD pulleys. Insufficient tension can cause belt slippage, while excessive tension can lead to premature wear on the pulleys and belts. Regularly check the belt tension using appropriate tensioning tools or methods recommended by the pulley manufacturer. Adjust the tension as needed to ensure it falls within the specified range. Maintaining the correct belt tension helps optimize power transmission, reduce wear, and prevent belt failure.

3. Lubrication:

Lubrication is important for reducing friction and wear in HTD pulleys. Some pulleys may require periodic lubrication of the bearings or bushings to ensure smooth operation. Consult the manufacturer’s guidelines to determine the appropriate lubrication intervals and the type of lubricant to use. Apply the lubricant as recommended, taking care not to over-lubricate. Proper lubrication helps minimize friction and heat generation, extending the lifespan of the pulleys and ensuring reliable performance.

4. Alignment:

Proper alignment of HTD pulleys is crucial for their reliability. Misalignment can cause premature wear on the belts, pulleys, and bearings, leading to reduced performance and potential failures. Regularly check the alignment of the pulleys using alignment tools or methods recommended by the manufacturer. Adjust the pulley positions as necessary to ensure proper alignment. Proper alignment ensures efficient power transmission, reduces wear, and minimizes the risk of belt slippage or premature failure.

5. Cleaning:

Keeping HTD pulleys clean is important for their reliable operation. Regularly clean the pulleys to remove dust, debris, or other contaminants that can accumulate on the pulley surfaces or teeth. Use a soft brush or cloth to gently clean the pulleys, taking care not to damage the teeth or other delicate parts. Avoid using harsh chemicals that can degrade the pulley material. Clean pulleys contribute to improved belt traction, reduced wear, and enhanced overall reliability.

6. Replacement of Worn or Damaged Components:

If any HTD pulley components, such as the pulleys themselves or the belts, are worn, damaged, or nearing the end of their lifespan, they should be replaced promptly. Worn or damaged pulleys can compromise the performance and reliability of the entire system. Follow the manufacturer’s recommendations for replacement parts and ensure that the new components meet the required specifications. Timely replacement of worn or damaged components helps maintain the reliability and longevity of HTD pulleys.

7. Follow Manufacturer’s Guidelines:

Lastly, it is important to follow the specific maintenance guidelines provided by the HTD pulley manufacturer. Different pulley designs and materials may require specific maintenance procedures or intervals. Consult the manufacturer’s documentation for detailed instructions on maintenance, lubrication, inspection, and any other relevant procedures. Adhering to the manufacturer’s guidelines ensures that the pulleys are maintained correctly and maximizes their reliability and performance.

In summary, to ensure the reliability of HTD pulleys, regular inspections, belt tension checks, lubrication, alignment, cleaning, replacement of worn components, and adherence to the manufacturer’s guidelines are necessary. By following these maintenance procedures, the lifespan of HTD pulleys can be extended, and their reliable operation can be ensured, minimizing downtime and optimizing the performance of the systems in which they are used.

htd pulley

What is an HTD pulley, and how does it differ from other pulley types?

An HTD pulley, which stands for “High Torque Drive” pulley, is a specific type of pulley used in power transmission systems. It is designed to work in conjunction with HTD belts, also known as timing belts, which have trapezoidal-shaped teeth. Here’s a detailed explanation of HTD pulleys and their differences from other pulley types:

1. Tooth Profile:

The primary difference between HTD pulleys and other pulley types lies in the tooth profile. HTD pulleys feature a trapezoidal tooth profile, specifically designed to match the shape of HTD belts. This tooth profile provides a larger contact area between the pulley and the belt, resulting in improved power transmission capabilities and higher torque capacity compared to other pulley types.

2. Synchronous Power Transmission:

HTD pulleys are commonly used in synchronous power transmission systems. This means that the pulley and the belt mesh together with precise tooth engagement, ensuring the synchronous and accurate transfer of power. The trapezoidal tooth profile of the HTD pulley and belt combination allows for efficient power transmission without slippage, making it suitable for applications that require precise timing and synchronization.

3. Load Distribution:

The design of HTD pulleys allows for even load distribution across the belt’s teeth. The trapezoidal tooth shape helps distribute the load more evenly compared to other pulley types, reducing stress concentration on individual teeth. This load distribution characteristic enhances the overall performance and longevity of the power transmission system, minimizing the risk of premature belt wear or tooth failure.

4. Backlash Reduction:

HTD pulleys are designed to minimize backlash, which refers to the slight movement or play that can occur between the pulley and the belt. The trapezoidal tooth profile of HTD pulleys provides a positive engagement with the belt, reducing or eliminating backlash. This feature is particularly important in applications where precise positioning or motion control is required, as it ensures accurate and repeatable positioning of the driven components.

5. Wide Range of Sizes and Options:

HTD pulleys are available in a wide range of sizes, configurations, and materials to accommodate different power transmission requirements. They come in various diameters, number of teeth, and bore sizes, allowing for flexibility in system design. HTD pulleys can be made from materials such as aluminum, steel, or plastic, depending on the specific application and environmental factors.

6. Belt Compatibility:

HTD pulleys are designed to work specifically with HTD belts. These belts have corresponding trapezoidal teeth that mesh seamlessly with the tooth profile of HTD pulleys. It is important to ensure that the pulley and belt are compatible in terms of tooth pitch and profile to achieve optimal performance and avoid premature wear or belt damage.

7. Application Range:

HTD pulleys are commonly used in various applications that require efficient power transmission, precise timing, and moderate to high torque capacity. They find application in industries such as robotics, automation, packaging machinery, CNC machines, 3D printers, and many more. HTD pulleys are suitable for both industrial and consumer-level applications where synchronous power transmission is essential.

In summary, HTD pulleys are a specific type of pulley designed for use with HTD belts in synchronous power transmission systems. They differ from other pulley types due to their trapezoidal tooth profile, which provides improved torque capacity, load distribution, reduced backlash, and precise timing. HTD pulleys are available in various sizes and materials, offering flexibility in system design and finding applications in a wide range of industries.

China OEM Poly Chain Gt 2 Timing Belt Pulley   pulley alternatorChina OEM Poly Chain Gt 2 Timing Belt Pulley   pulley alternator
editor by CX